Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(15): 4096-4104, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38587484

ABSTRACT

Structure-optimized bimetallic and multicomponent catalysts often outperform single-component catalysts, inspiring a detailed investigation of metal-metal and metal-support interactions in the system. We investigated the geometric and electronic structures of ceria-supported Ni-Cu particles prepared using different metal deposition sequences employing a combination of X-ray photoelectron spectroscopy, resonant photoemission spectroscopy, and infrared reflection absorption spectroscopy. The bimetallic model catalyst structure was altered by a distinct surface evolution process determined by the metal deposition sequence. The postdeposited Cu stays on the surface of Ni predeposited CeO2 and forms only a limited Ni-Cu alloy in the Cu-contacted Ni region. However, when Ni is deposited on the Cu predeposited CeO2 surface, Ni can migrate through the Cu layer to the Cu-ceria interface and form an extended Ni-Cu alloy to the whole deposited metal layer on the ceria surface. The dynamic metal diffusion in the CeO2-supported Ni-Cu system indicates that metal-support interactions can be used to achieve the rational design of a bimetallic composition distribution during catalyst preparation.

2.
J Am Chem Soc ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608251

ABSTRACT

Pt is a well-known benchmark catalyst in the acidic oxygen reduction reaction (ORR) that drives electrochemical O2-to-H2O conversion with maximum chemical energy-to-electricity efficiency. Once dispersing bulk Pt into isolated single atoms, however, the preferential ORR pathway remains a long-standing controversy due to their complex local coordination environment and diverse site density over substrates. Herein, using a set of carbon nanotube supported Pt-N-C single-atom catalysts, we demonstrate how the neighboring N dopants regulate the electronic structure of the Pt central atom and thus steer the ORR selectivity; that is, the O2-to-H2O2 conversion selectivity can be tailored from 10% to 85% at 0.3 V versus reversible hydrogen electrode. Moreover, via a comprehensive X-ray-radiated spectroscopy and shell-isolated nanoparticle-enhanced Raman spectroscopy analysis coupled with theoretical modeling, we reveal that a dominant pyridinic- and pyrrolic-N coordination within the first shell of Pt-N-C motifs favors the 4e- ORR, whereas the introduction of a second-shell graphitic-N dopant weakens *OOH binding on neighboring Pt sites and gives rise to a dominant 2e- ORR. These findings underscore the importance of the chemical environment effect for steering the electrochemical performance of single-atom catalysts.

3.
Small ; : e2400619, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593311

ABSTRACT

The challenges of Lithium-carbon dioxide (Li-CO2) batteries for ensuring long-term cycling stability arise from the thermodynamically stable and electrically insulating discharge products (e.g., Li2CO3), which primarily rely on their interaction with the active materials. To achieve the optimized intermediates, the bifunctional electron donor-acceptor (D-A) pairs are proposed in cathode design to adjust such interactions in the case of B-O pairs. The inclusion of BC2O sites allows for the optimized redistribution of electrons via p-π conjugation. The as-obtained DO-AB pairs endow the enhanced interactions with Li+, CO2, and various intermediates, accompanied by the adjustable growth mode of Li2CO3. The shift from solvation-mediated mode into surface absorption mode in turn manipulates the morphology and decomposition kinetics of Li2CO3. Therefore, the corresponding Li-CO2 battery got twofold improved in both the capacity and reversibility. The cycling prolongs exceed 1300 h and well operates at a wide temperature range (20-50 °C) and different folding angles (0-180°). Such a strategy of introducing electron donor-acceptor pairs provides a distinct direction to optimize the lifetime of Li-CO2 battery from local structure regulation at the atomic scale, further inspiring in-depth understandings for developing electrochemical energy storage and carbon capture technologies.

4.
Nano Lett ; 24(18): 5513-5520, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38634689

ABSTRACT

P-type self-doping is known to hamper tin-based perovskites for developing high-performance solar cells by increasing the background current density and carrier recombination processes. In this work, we propose a gradient homojunction structure with germanium doping that generates an internal electric field across the perovskite film to deplete the charge carriers. This structure reduces the dark current density of perovskite by over 2 orders of magnitude and trap density by an order of magnitude. The resultant tin-based perovskite solar cells exhibit a higher power conversion efficiency of 13.3% and excellent stability, maintaining 95% and 85% of their initial efficiencies after 250 min of continuous illumination and 3800 h of storage, respectively. We reveal the homojunction formation mechanism using density functional theory calculations and molecular level characterizations. Our work provides a reliable strategy for controlling the spatial energy levels in tin perovskite films and offers insights into designing intriguing lead-free perovskite optoelectronics.

5.
J Am Chem Soc ; 146(18): 12850-12856, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38648558

ABSTRACT

Acetylene production from mixed α-olefins emerges as a potentially green and energy-efficient approach with significant scientific value in the selective cleavage of C-C bonds. On the Pd(100) surface, it is experimentally revealed that C2 to C4 α-olefins undergo selective thermal cleavage to form surface acetylene and hydrogen. The high selectivity toward acetylene is attributed to the 4-fold hollow sites which are adept at severing the terminal double bonds in α-olefins to produce acetylene. A challenge arises, however, because acetylene tends to stay at the Pd(100) surface. By using the surface alloying methodology with alien Au, the surface Pd d-band center has been successfully shifted away from the Fermi level to release surface-generated acetylene from α-olefins as a gaseous product. Our study actually provides a technological strategy to economically produce acetylene and hydrogen from α-olefins.

6.
Adv Mater ; : e2311145, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334458

ABSTRACT

High-quality perovskite films are essential for achieving high performance of optoelectronic devices; However, solution-processed perovskite films are known to suffer from compositional and structural inhomogeneity due to lack of systematic control over the kinetics during the formation. Here, the microscopic homogeneity of perovskite films is successfully enhanced by modulating the conversion reaction kinetics using a catalyst-like system generated by a foaming agent. The chemical and structural evolution during this catalytic conversion is revealed by a multimodal synchrotron toolkit with spatial resolutions spanning many length scales. Combining these insights with computational investigations, a cyclic conversion pathway model is developed that yields exceptional perovskite homogeneity due to enhanced conversion, having a power conversion efficiency of 24.51% for photovoltaic devices. This work establishes a systematic link between processing of precursor and homogeneity of the perovskite films.

7.
J Phys Chem Lett ; 14(43): 9787-9792, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37883195

ABSTRACT

The Kagome lattice structures based on metal-organic coordination have garnered widespread interest because of their topologically Dirac/flat bands and other exotic electronic structures. However, the experimental fabrication of large-area two-dimensional (2D) Kagome lattice structures of metal-organic frameworks (MOFs) via on-surface synthesis remains limited. Herein, we successfully construct two kinds of large-scale 2D Kagome-type lattices stabilized by 4-fold N-Ag coordination on the Ag(111) surface. With the aid of scanning tunneling microscopy (STM) and synchrotron radiation photoemission spectroscopy (SRPES), we clearly elucidate the reaction pathway and mechanism of fabrication of the two Kagome lattices. This work provides a novel platform for investigating related intriguing physical properties.

8.
Adv Mater ; 35(49): e2306135, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37776317

ABSTRACT

Layered inorganic material, with large-area interlayer surface and interface, provides an essential material platform for constructing new configuration of functional materials. Herein, a layered material pillared with nanoclusters realizing high temperature thermal insulation performance is demonstrated for the first time. Specifically, systematic synchrotron radiation spectroscopy and finite element calculation analysis show that ZrOx nanoclusters served as "pillars" to effectively produce porous structures with enough boundary defect while maintaining the layered structure, thereby significantly reducing solid state thermal conductivity (≈0.32 W m-1  K-1 , 298-573 K). Moreover, the layered inorganic silicate material assembled aerogel also exhibits superior thermal insulation performance from room temperature (0.034 W m-1  K-1 , 298 K, air conditions) to high temperature (0.187 W m-1  K-1 , 1073 K, air conditions) and largely enhanced compressive strength (42 kPa at 80% compression), which is the best layered material-based aerogel that has achieved synergistic improvement in thermal and mechanical performance so far. Layered inorganic silicate aerogel pillared by nanoclusters will pave a new avenue for the design of advanced thermal insulation materials under extreme conditions.

9.
Angew Chem Int Ed Engl ; 62(43): e202306368, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37401637

ABSTRACT

The electrical and mechanical properties of graphene-based materials can be tuned by the introduction of nanopores, which are sensitively related to the size, morphology, density, and location of nanopores. The synthesis of low-dimensional graphene nanostructures containing well-defined nonplanar nanopores has been challenging due to the intrinsic steric hindrance. Herein, we report the selective synthesis of one-dimensional (1D) graphene nanoribbons (GNRs) containing periodic nonplanar [14]annulene pores on Ag(111) and two-dimensional (2D) porous graphene nanosheet containing periodic nonplanar [30]annulene pores on Au(111), starting from a same precursor. The formation of distinct products on the two substrates originates from the different thermodynamics and kinetics of coupling reactions. The reaction mechanisms were confirmed by a series of control experiments, and the appropriate thermodynamic and kinetic parameters for optimizing the reaction pathways were proposed. In addition, the combined scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations revealed the electronic structures of porous graphene structures, demonstrating the impact of nonplanar pores on the π-conjugation of molecules.

10.
Chemphyschem ; 24(20): e202300400, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37488069

ABSTRACT

The interfacial electronic structure of perovskite layers and transport layers is critical for the performance and stability of perovskite solar cells (PSCs). The device performance of PSCs can generally be improved by adding a slight excess of lead iodide (PbI2 ) to the precursor solution. However, its underlying working mechanism is controversial. Here, we performed a comprehensive study of the electronic structures at the interface between CH3 NH3 PbI3 and C60 with and without the modification of PbI2 using in situ photoemission spectroscopy measurements. The correlation between the interfacial structures and the device performance was explored based on performance and stability tests. We found that there is an interfacial dipole reversal, and the downward band bending is larger at the CH3 NH3 PbI3 /C60 interface with the modification of PbI2 as compared to that without PbI2 . Therefore, PSCs with PbI2 modification exhibit faster charge carrier transport and slower carrier recombination. Nevertheless, the modification of PbI2 undermines the device stability due to aggravated iodide migration. Our findings provide a fundamental understanding of the CH3 NH3 PbI3 /C60 interfacial structure from the perspective of the atomic layer and insight into the double-edged sword effect of PbI2 as an additive.

11.
Nat Commun ; 14(1): 3776, 2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37355748

ABSTRACT

Developing highly efficient, selective and low-overpotential electrocatalysts for carbon dioxide (CO2) reduction is crucial. This study reports an efficient Ni single-atom catalyst coordinated with pyrrolic nitrogen and pyridinic nitrogen for CO2 reduction to carbon monoxide (CO). In flow cell experiments, the catalyst achieves a CO partial current density of 20.1 mA cmgeo-2 at -0.15 V vs. reversible hydrogen electrode (VRHE). It exhibits a high turnover frequency of over 274,000 site-1 h-1 at -1.0 VRHE and maintains high Faradaic efficiency of CO (FECO) exceeding 90% within -0.15 to -0.9 VRHE. Operando synchrotron-based infrared and X-ray absorption spectra, and theoretical calculations reveal that mono CO-adsorbed Ni single sites formed during electrochemical processes contribute to the balance between key intermediates formation and CO desorption, providing insights into the catalyst's origin of catalytic activity. Overall, this work presents a Ni single-atom catalyst with good selectivity and activity for CO2 reduction while shedding light on its underlying mechanism.


Subject(s)
Carbon Dioxide , Nickel , Carbon Monoxide , Electrodes , Nitrogen
12.
Proc Natl Acad Sci U S A ; 120(13): e2217208120, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36940337

ABSTRACT

Intercalation-type layered oxides have been widely explored as cathode materials for aqueous zinc-ion batteries (ZIBs). Although high-rate capability has been achieved based on the pillar effect of various intercalants for widening interlayer space, an in-depth understanding of atomic orbital variations induced by intercalants is still unknown. Herein, we design an NH4+-intercalated vanadium oxide (NH4+-V2O5) for high-rate ZIBs, together with deeply investigating the role of the intercalant in terms of atomic orbital. Besides extended layer spacing, our X-ray spectroscopies reveal that the insertion of NH4+ could promote electron transition to 3dxy state of V t2g orbital in V2O5, which significantly accelerates the electron transfer and Zn-ion migration, further verified by DFT calculations. As results, the NH4+-V2O5 electrode delivers a high capacity of 430.0 mA h g-1 at 0.1 A g-1, especially excellent rate capability (101.0 mA h g-1 at 200 C), enabling fast charging within 18 s. Moreover, the reversible V t2g orbital and lattice space variation during cycling are found via ex-situ soft X-ray absorption spectrum and in-situ synchrotron radiation X-ray diffraction, respectively. This work provides an insight at orbital level in advanced cathode materials.

13.
J Am Chem Soc ; 144(47): 21596-21605, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36383110

ABSTRACT

On-surface synthesis is a powerful methodology for the fabrication of low-dimensional functional materials. The precursor molecules usually anchor on different metal surfaces via similar configurations. The activation energies are therefore solely determined by the chemical activity of the respective metal surfaces. Here, we studied the influence of the detailed adsorption configuration on the activation energy on different metal surfaces. We systematically studied the desulfonylation homocoupling for a molecular precursor on Au(111) and Ag(111) and found that the activation energy is lower on inert Au(111) than on Ag(111). Combining scanning tunneling microscopy observations, synchrotron radiation photoemission spectroscopy measurements, and density functional theory calculations, we elucidate that the phenomenon arises from different molecule-substrate interactions. The molecular precursors anchor on Au(111) via Au-S interactions, which lead to weakening of the phenyl-S bonds. On the other hand, the molecular precursors anchor on Ag(111) via Ag-O interactions, resulting in the lifting of the S atoms. As a consequence, the activation barrier of the desulfonylation reactions is higher on Ag(111), although silver is generally more chemically active than gold. Our study not only reports a new type of on-surface chemical reaction but also clarifies the influence of detailed adsorption configurations on specific on-surface chemical reactions.


Subject(s)
Gold , Silver , Gold/chemistry , Silver/chemistry , Molecular Conformation , Adsorption
14.
J Phys Chem Lett ; 13(14): 3276-3282, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35389642

ABSTRACT

Achieving C(sp3)-H activation at a mild temperature is of great importance from both scientific and technologic points of view. Herein, on the basis of the on-surface synthesis strategy, we report the significant reduction of the C(sp3)-H activation barrier, which results in the full C(sp3)-H to C(sp2)-H transformation of n-alkanol (octacosan-1-ol) at a mild temperature as low as 350 K on the Cu(110) surface, yielding the conjugated polyenal (octacosa-tridecaenal) as the final product. The reaction mechanism is revealed by the combined scanning tunneling microscope, density functional theory, and synchrotron radiation photoemission spectroscopy.

15.
Nanoscale ; 14(16): 6239-6247, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35403634

ABSTRACT

Kagome nanoporous graphenes (NPGs) are fascinating due to their exotic electronic and magnetic properties. The emerging on-surface synthesis (mostly on metal surfaces) provides a new opportunity to fabricate Kagome NPGs with atomic resolution. Previously the Kagome NPGs synthesized on surfaces were largely heteroatom-doped and suffer from morphological defects (evidently on metal surfaces). The on-surface synthesis of pristine Kagome NPG with improved structural quality is extremely desirable. In this paper, using a halogenated precursor, we report a bottom-up fabrication of pristine NPG with Kagome topology on Ag(111) via classic Ullmann coupling. The templating effect of organometallic (OM) intermediates for subsequent covalent coupling is determined by comparing the OM phase and resultant covalent product. The reaction parameters are found to have a significant impact on the topology and quality of OM intermediates. Specifically, a higher surface temperature and lower evaporation rate favor the growth of better-quality and higher-yield OM Kagome NPGs. The covalent Kagome NPGs obtained by further annealing of these OM networks are affected likewise due to the template effect of OM intermediates. Our work further confirms the generality of the OM template effect. It also offers a novel method to achieve the selective synthesis of Kagome lattice networks.

16.
Small ; 18(19): e2201092, 2022 May.
Article in English | MEDLINE | ID: mdl-35398977

ABSTRACT

The facile creation of high-performance single-atom catalysts (SACs) is intriguing in heterogeneous catalysis, especially on 2D transition-metal dichalcogenides. An efficient spontaneous reduction approach to access atomically dispersed iron atoms supported over defect-containing MoS2 nanosheets is herein reported. Advanced characterization methods demonstrate that the isolated iron atoms situate atop of molybdenum atoms and coordinate with three neighboring sulfur atoms. This Fe SAC delivers exceptional catalytic efficiency (1 atm O2 @ 120 °C) in the selective oxidation of benzyl alcohol to benzaldehyde, with 99% selectivity under almost 100% conversion. The turnover frequency is calculated to be as high as 2105 h-1 . Moreover, it shows admirable recyclability, storage stability, and substrate tolerance. Density functional theory calculations reveal that the high catalytic activity stems from the optimized electronic structure of single iron atoms over the MoS2 support.

17.
J Phys Chem Lett ; 12(15): 3733-3739, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33843217

ABSTRACT

Realization of the Kagome antiferromagnetic (KAF) lattice is of high interest because the geometric frustration in the Kagome lattice is expected to give rise to highly degenerated ground states that may host exotic phases such as quantum spin liquid. Here we demonstrate the design and synthesis of a single-layer two-dimensional metal-organic framework (2D-MOF) containing a Kagome lattice of Fe(II) ions assembled on a Au(111) surface. First-principles calculations reveal that the Fe(II) ions are at a high spin state of S = 2 and are coupled antiferromagnetically with nearest-neighboring exchange J1 = 5.8 meV. The ground state comprises various degenerated spin configurations including the well-known q = 0 and q = √3 × âˆš3 phases. Remarkably, we observe a spin excitation at 6 meV using tunneling spectroscopy. This work points out a feasible route toward realizing spin 1/2 KAF, a candidate quantum spin liquid system, by replacing Fe(II) by Cu(II) in the same structure.

18.
Nat Commun ; 11(1): 4789, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32963247

ABSTRACT

Hydroxide exchange membrane fuel cells offer possibility of adopting platinum-group-metal-free catalysts to negotiate sluggish oxygen reduction reaction. Unfortunately, the ultrafast hydrogen oxidation reaction (HOR) on platinum decreases at least two orders of magnitude by switching the electrolytes from acid to base, causing high platinum-group-metal loadings. Here we show that a nickel-molybdenum nanoalloy with tetragonal MoNi4 phase can catalyze the HOR efficiently in alkaline electrolytes. The catalyst exhibits a high apparent exchange current density of 3.41 milliamperes per square centimeter and operates very stable, which is 1.4 times higher than that of state-of-the-art Pt/C catalyst. With this catalyst, we further demonstrate the capability to tolerate carbon monoxide poisoning. Marked HOR activity was also observed on similarly designed WNi4 catalyst. We attribute this remarkable HOR reactivity to an alloy effect that enables optimum adsorption of hydrogen on nickel and hydroxyl on molybdenum (tungsten), which synergistically promotes the Volmer reaction.

19.
ACS Appl Mater Interfaces ; 12(25): 28861-28868, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32478504

ABSTRACT

Interfacial properties of perovskite layers and metal electrodes play a crucial role in device performance and long-term stability of perovskite solar cells. In this work, we performed a comprehensive study of the interfacial structures and ion migration at the interface of a CH3NH3PbI3 perovskite layer and an Al electrode using in situ synchrotron radiation photoemission spectroscopy measurements. It was found that the Al electrode can react with the perovskite layers, leading to the formation of aluminum iodide species and the bonding between Al and N, as well as the reduction of Pb2+ ions to metallic Pb species at the interface. Moreover, during the Al deposition, iodide ions can migrate from the CH3NH3PbI3 subsurface to the Al electrode, while the reduced Pb remains at the subsurface. The depth profile photoemission measurements, made by varying the photon energies of incident synchrotron radiation X-rays, demonstrate that the reaction occurs at the Al/CH3NH3PbI3 interface at least with a thickness of ∼3.5 nm below the perovskite surface. This study provides an atomic-level fundamental understanding of the Al/CH3NH3PbI3 interfacial structures and insight into the degradation mechanisms of perovskite solar cells when using Al metal as the electrode.

20.
Chem Commun (Camb) ; 56(36): 4890-4893, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32236253

ABSTRACT

The reaction of 2,2'-dibromo-biphenyl on a Ag(111) surface leads to the formation of planar acenes with a high-regioselectivity rather than nonplanar saddle-shaped tetraphenylene as the typical product in solution chemistry. The regioselective aryl-aryl coupling reaction is attributed to the hydrogen repulsion between the reactants on the confined two-dimensional surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...